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ABSTRACT. Stock discrimination is essential for biomass population assessment and essential for the fisheries 

management. The analysis of shape differences in anatomical structures (e.g., body shape, otoliths, scales) has 

been relevant issue in the study of population structure. We evaluated the hypothesis on the existence of a stock-
structured population of Pacific thread herring Opisthonema libertate in the northwestern coast of Mexico. 

Geometric morphometric methods were used to analyze body and otolith shape. Samples come from at three 
commercial fishery-landing sites: Magdalena Bay, Guaymas, and Mazatlan, Mexico. Results based on body and 

otolith shape support the existence of different morphotypes by location. Body shape allowed better 
discrimination than otolith shape. The differences observed between the phenotypic stocks suggest seasonal 

movements, which are linked to the marine current system in this region, particularly to the California Current 
and the North Equatorial Counter Current.  

Keywords: Opisthonema libertate, stock, morphotypes, anatomical structure, shape, fisheries management. 

 

 
 

INTRODUCTION 

Related to the management of marine resources, the 

differentiation of stocks in an exploited population is 

critical in fishery biology (Begg & Waldman, 1999; 

Cadrin et al., 2005). According to Ihssen et al. (1981) 

stock is an intraspecific group of individuals that mate 

randomly and maintain spatial and temporal integrity. 

An approach for stock identification has been centered 

on the detection of groups based on the quantification 

of morphometric differences (Cadrin, 2000; Waldman, 

2005). This approach is founded on the assumption that 

individuals with high similarity (similar morphotypes) 

must be closely related biologically and ecologically 

(Cadrin et al., 2005). The origins of individuals and the 

environmental variables associated with their distri-

bution provide a source of additional information to 
justify the natural integrity of stocks.  

Stock identification, mainly of commercial fishes, 

has usually been addressed on the analysis of body 

shape (Silva, 2003; De La Cruz-Agüero & García-
Rodríguez, 2004; Tzeng, 2004; Ibáñez-Aguirre et al.,  
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2006; García-Rodríguez et al., 2011; Vergara-Solana et 
al., 2013) and of sagitta otolith shape (Campana & 

Casselman, 1993; DeVries et al., 2002; Félix-Uraga et 
al., 2005; Stransky et al., 2008; Ramírez-Pérez et al., 
2010), or on the analysis of the shape of both structures 

(Vergara-Solana et al., 2013). Results obtained based 

on body morphology could be different from those 

obtained based on otolith shape (Félix-Uraga et al., 

2005; García-Rodríguez et al., 2011; Vergara-Solana et 
al., 2013), as the morphometric variability between the 

two structures could vary (Vergara-Solana et al., 2013) 

due to environmental and/or genetic causes. For this 

reason, the use of both structures could provide a better 

understanding of population dynamics. Comparative 

analyses are therefore relevant and more informative 

(Waldman, 1999). 

To date, the study of small pelagic fishes based on 

morphometric analyses in northwestern Mexico has 

been carried out mainly on the Pacific sardine 

Sardinops sagax (De La Cruz-Agüero & García-

Rodríguez, 2004; Félix-Uraga et al., 2005; García-

Rodríguez et al., 2011; Vergara-Solana et al., 2013).  
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These studies support the existence of different 

phenotypic stocks, which have been associated with 

water masses with different sea surface temperature 

(SST) (Félix-Uraga et al., 2005; García Rodríguez et 
al., 2011; Vergara-Solana et al., 2013). On the other 

hand, there are two main marine current systems in 

northwestern Mexico: the California Current (CC) and 

the North Equatorial Counter Current (NECC). The CC 

intensifies in winter-spring, and the NECC is most 

influential in summer-fall (Pavlova, 1966; Hickey, 

1979; Talley, 1993; Parés-Sierra et al., 1997; Pérez-

Brunius et al., 2007; García-Morales et al., 2012). It has 

been observed that the intensification or weakening of 

these current systems modifies the latitudinal 

distribution of marine fauna (Bograd & Lynn, 2003; 

Félix-Uraga et al., 2004; Lluch-Belda et al., 2005; 

Gaxiola-Castro et al., 2008; Durazo, 2009). In parti-

cular, the existence of a well-defined anticyclonic 

circulation occurring from February to July and 

cyclonic circulation occurring from August to January 

has been proposed for the Gulf of California (Marinone 

et al., 2011; Marinone, 2012). The western coast of 

Baja California is influenced by the CC in winter-

spring, whereas in summer-fall it is influenced by the 

NECC. Under this scenario, it is reasonable to hypo-

thesize some influence of oceanographic circulations 

patterns in the population structure of fishes. This could 

be true of the Pacific thread herring Opisthonema 

libertate (Günther, 1867), a species widely distributed 

from northern Peru to the western coast of the Baja 

California Peninsula and the Gulf of California, 
Mexico. 

The Pacific thread herring is one of the most 

abundant species of small pelagic fishes in the 

northwestern Mexican Pacific and is an essential 

component in the diet of a wide variety of high trophic 

level species (Holt, 1975; Rodríguez-Domínguez, 

1987; Pérez-Quiñonez et al., 2017). The Pacific thread 

herring, along with slender thread herring Opisthonema 
bulleri (Regan, 1904) and middling thread herring 
Opisthonema medirastre (Berry & Barrett, 1963), 

constitute important economic resources in Mexico due 

to their significant catch rates (1,333,786 ton total catch 

during 2006-2014), and currently represents one of the 

most stable fisheries in Mexico (Acal, 1990; Nevárez-

Martínez et al., 2006; Jacob-Cervantes, 2010; 

SAGARPA-CONAPESCA, 2013). The fishery is only 

regulated by a 160 mm SL minimum catch size. Despite 

its importance as a fishery resource, the information 

necessary to evaluate the population status of this 

species within the Opisthonema genus in northwestern 
Mexico is limited. Even its taxonomic situation is 

controversial until recently (Csirke, 1980; Stevenson & 

Carranza, 1981; Lagúnez-Moreno, 1989; Vega-

Corrales, 2010; Vallarta-Zárate, 2012). However, the 

taxonomic validity of the three entities (O. libertate, O. 
bulleri and O medirastre) was recently supported by 

morphometric and genetic data (Pérez-Quiñonez et al., 
2017). 

Consequently, the official records do not 

discriminate by species in the catch records, studies by 

Ruiz & Lyle (1992) and Jacob-Cervantes et al. (2007) 

indicate that of the three species, O. libertate comprises 

the highest catch volumes. Consequently, it is crucial to 

provide biological information on this species to obtain 

a better understanding of its population dynamics. 

In the present study, we carried out a morphometric 

comparison (body and otoliths) of the Pacific thread 

herring O. libertate to detect the existence of 

morphotypes or phenotypic stocks in the northwestern 

coast of Mexico. Taking into account the movement 

pattern dynamics of other sardine species and the 

oceanographic characteristics of the region, we eva-

luated the hypothesis on the existence of a population 

structured in stocks (different morphotypes) of Pacific 
thread herring in northwestern Mexico. 

MATERIALS AND METHODS 

Sampling 

Two hundred and four Pacific thread herring specimens 
were obtained from the commercial catch. The herring 

comes from winter (January-February) and summer 
(July, August and September) landings in the ports of 

Bahía Magdalena (BM), Guaymas (GYM), and 
Mazatlan (MZ), the fish caught during these months 

were selected for the analysis, because at this time the 

smallest (winter) and largest (summer) differences in 
SST among the three fishing zones are recorded. These 

SST conditions, a consequence of the influence of the 
two current systems in the region (CC and CCNE), 

would promote the expansion and concentration of the 

distribution of the herring population in the northwest 
of the Mexican Pacific. (Fig. 1). The sample size was 

94 individuals (BM, n = 33; GYM, n = 31; MAZ, n = 
30) in winter, and 110 individuals (BM, n = 39; GYM, 

n = 37; MAZ, n = 34) in summer. All individuals were 
sampled in 2014, except the Mazatlán winter sample, 

which was collected in 2013. 

Specimens were frozen and transferred to the 

Population Dynamics Laboratory of CICIMAR-IPN 

(http://www.cicimar.ipn.mx) in La Paz, B.C.S., Mexico, 

where they were processed, and their taxonomic status 

was confirmed based on the works by Berry & Barret 

(1963), Torres-Ramírez (2004), and Pérez-Quiñonez et 
al. (2017). The size of individuals was recorded taking 
into account standard length. All the individuals analy- 

http://www.cicimar.ipn.mx/
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Figure 1. Northwestern coast of Mexico showing the 

geographic location of the landing ports of the purse-seine 

fleet fishing small pelagic fish, and SST monthly variation 

by zone. 

zed were adults (≥120 mm SL), according to the 

relationship between length and sexual condition 

(Berry & Barrett, 1963; Jacob-Cervantes & Aguirre-

Villaseñor, 2014, Pérez-Quiñonez et al., 2017), the 

range of size varies between 140 to 210 mm LE. 

Image acquisition and location of landmarks 

The left side of each´s body was photographed next to 

a size-scale using a Cannon Power Shot Sx5001S 

digital camera mounted on a fixed base. The sagitta 

otoliths were later extracted using dissecting forceps 

and washed with water and phosphate-free soap. The 

sulcus face of the right otolith of each was photogra-

phed using a Sony Hyper HAD CCD-IRIS/RGB Model 

DXC-151a digital camera connected to a stereoscopic 

microscope using reflected light (Olympus SZX-

ILLK100). All otolith images were recorded along with 

a size-scale using 16.5x magnification. 

Morphometric comparisons were based on 

configure-tions generated from digitizing homologous 

anato-mical landmarks. As landmarks were insufficient 

to represent the body and otolith shapes, we generated 

templates of the digital images to provide guidelines of 

equal angular spacing to identify points (semiland-

marks) along the structure´s curves using the MakeFan 

program (Sheets, 2004). For the body shape first, a 

template was constructed based on the landmarks at the 

tip of snout, and at the origin of the pectoral and dorsal 

fin. A second template was based on landmarks located 

at the end of the dorsal fin, and the origin of the anal fin 

and at the origin of the upper part of the caudal fin. 

Moreover, a third template was based on landmarks 

located at the origin of the dorsal and anal fin, and at 

the origin of the lower part of the caudal fin. Semi-

landmarks were digitized at the intersection of the 

curve and the lines of the fans. For the otolith shape first 

were located three natural marks; the antirostrum tip, 

the focus and the right posterior border of the otolith 

then two templates was cons-tructed based on these 

marks; one for the otoliths ventral part and another for 

the dorsal part. 

A total of 13 body landmarks and semi-landmarks, 

and 20 otolith landmarks and semi-landmarks were 

used in our analysis (Fig. 2). All marks were digitized 

using the program TpsDig 1.4 (Rohlf, 2004). 

Data analysis 

We carried out morphometric comparisons, separating 

the winter and summer data because migratory 

movements can confound the origin of stocks, as has 

been suggested for other pelagic fish (Félix-Uraga et 

al., 2005; García-Rodríguez et al., 2011). 

Geometric configurations were translated, scaled 

and rotated for each season using the generalized least 

squares Procrustes superimposition (Gower, 1975) in 

the Coordgen 6 program (Sheets, 2004). The Partial 

Procrustes Distance (PPD) was calculated between the 

mean shapes of the two groups to perform paired 

comparisons. The significance of the test was based on 

bootstrapping to determine whether the observed F-

value could have been produced by chance, taking into 

account the distribution of bootstrapped F-values. We 

carried out this analysis using the TwoGroup6 software 

(Sheets, 2004). 

For each structure separately, partial warp scores 

were obtained from the Thin-Plate Spline interpolation 

function (Bookstein, 1989), and used for quantifying 

differences between groups by means of a canonical 

variate analysis (CVA), which is a method of finding 

the set of axes (or linear combination of variables) that 

allows for the greatest possible ability to discriminate 

between two or more groups. The significance of the 

CVA scores was based on Wilk’s lambda (λ) values, 

using Bartlett’s test, a statistic that has an appro-
ximately chi-squared distribution. The CVA scores 

were used to obtain an a posteriori assignment of 

individuals based on Mahalanobis distances between  
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Figure 2. Location of 13 marks used to represent the thread herring (Opisthonema libertate) body shape; 20 marks were 

used for otoliths. Black dots: landmarks, white dots: semi-landmarks. 

 

 

the means of the a priori groups. Bias classification was 

determined using the Jackknife method with 1000 

bootstrap iterations; this provides a sense of how 

effective the discrimination and assignment can be 

expected to be, given a specific data set. Previous 

analyses were performed in the CvaGen6o program 

(Sheets, 2004). Mahalanobis distances were estimated 

using Statistica v.8 (www. Statsoft.com) and used to 

construct an unrooted tree based on Neighbor-Joining 

(Saitou & Nei, 1987) using the Neighbor module in 
Phylip Ver 3.6 module (Felsenstein, 2005). 

A total of 13 body landmarks and semi-landmarks, 

and 20 otolith landmarks and semi-landmarks were 

used in our analysis (Fig. 2). All marks were digitized 
using the program TpsDig 1.4 (Rohlf, 2004). 

Data analysis 

We carried out morphometric comparisons, separating 

the winter and summer data because migratory 

movements can confound the origin of stocks, as has 

been suggested for other pelagic fish (Félix-Uraga et 
al., 2005; García-Rodríguez et al., 2011). 

Geometric configurations were translated, scaled 

and rotated for each season using the generalized least 

squares Procrustes superimposition (Gower, 1975) in 

the Coordgen 6 program (Sheets, 2004). The Partial 

Procrustes Distance (PPD) was calculated between the 

mean shapes of the two groups to perform paired 

comparisons. The significance of the test was based on 

bootstrapping to determine whether the observed F-

value could have been produced by chance, taking into 

account the distribution of bootstrapped F-values. We 

carried out this analysis using the TwoGroup6 software 
(Sheets, 2004). 

For each structure separately, partial warp scores 

were obtained from the Thin-Plate Spline interpolation 

function (Bookstein, 1989), and used for quantifying 

differences between groups by means of a canonical 
variate analysis (CVA), which is a method of finding 

the set of axes (or linear combination of variables) that 

allows for the greatest possible ability to discriminate 

between two or more groups. The significance of the 

CVA scores was based on Wilk’s lambda (λ) values, 

using Bartlett’s test, a statistic that has an approxi-

mately chi-squared distribution. The CVA scores were 

used to obtain an a posteriori assignment of individuals 

based on Mahalanobis distances between the means of 

the a priori groups. Bias classification was determined 

using the Jackknife method with 1000 bootstrap 

iterations; this provides a sense of how effective the 

discrimination and assignment can be expected to be, 

given a specific data set. Previous analyses were 

performed in the CvaGen6o program (Sheets, 2004). 

Mahalanobis distances were estimated using Statistica 

v.8 (www. Statsoft.com) and used to construct an 

unrooted tree based on Neighbor-Joining (Saitou & 

Nei, 1987) using the Neighbor module in Phylip Ver 
3.6 module (Felsenstein, 2005). 

RESULTS 

Morphometric differences based on body shape  

The analysis based on the F-test indicated significant 

differences between each paired Partial Procrustes 
Distance (PPD) in winter (F = 5.23, P = 0.002, PPD = 

0.0218, for BM-GYM; F = 3.77, P = 0.011, PPD = 
0.0202, for GYM-MAZ; F = 7.42, P = 0.001, PPD = 

0.0238, for BM-MAZ). The two canonical variables 

indicated statistically significant differences between 
the groups (Wilk’s lambda = 0.15, P < 0.001 for CV1; 

Wilk’s lambda = 0.50, P < 0.001 for CV2), giving 
support to the existence of different Pacific thread 

herring morphotypes in winter (Fig. 3). The percentage 
of correct assignment (PeCoAs) was 72.3% on average. 

The highest value was obtained for MAZ (76.6%), and 

the lowest was obtained for GYM (67.7%) (Table 1). 
The lowest average assignment error occurred between 

fish from BM-MAZ and the highest between fish from 
GYM-MAZ and GYM-BM (Table 1).  

The two canonical variables indicated statistically 

significant differences between the groups (Wilk’s 

lambda = 0.23, P < 0.001 for CV1; Wilk’s lambda =  



Opisthonema libertate phenotypic stocks in northwestern coast of Mexico                                                  783 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Scatter diagram generated from CV1 and CV2 scores for body shape in a) winter and b) summer. 

 

Table 1. Allocation matrix (%) generated from the CVA for body shape. Upper matrix values correspond to winter body 

shape analysis (PeCoAs = 72.3%); bottom matrix values correspond to summer body shape analysis (PeCoAs = 62.7%). 

Values in bold on diagonal of each matrix show correct classification percentages per zone. Sample size: number of 

individuals analyzed per data set. 

 

Zone  
Mazatlán 

(MAZ) 

Bahía Magdalena 

(BM) 

Guaymas 

(GYM) 

Sample 

size 

Mazatlán (winter)  76.6 (n = 23) 6.66 (n = 2) 16.6 (n = 5) 94 
Bahía Magdalena (winter) 9.09 (n = 3)   72.7 (n = 24) 18.1 (n = 6)  

Guaymas (winter) 16.1 (n = 5) 16.1 (n = 5)   67.7 (n = 21)  

Mazatlán (summer)   67.4 (n = 23) 14.7 (n = 5) 17.6 (n = 6) 110 

Bahía Magdalena (summer) 12.8 (n = 5)   66.6 (n = 26) 20.5 (n = 8)  

Guaymas (summer) 18.9 (n = 7)      27 (n = 10)      54 (n = 20)  

 

0.52, P < 0.001 for CV2), suggesting the existence of 

different Pacific thread herring morphotypes in summer 

(Fig. 3). Figure 4 shows the morphological affinity 

between the three groups based on Mahalanobis distan-

ces and indicates that fish from GYM-MAZ had the 

lowest morphological differences, whereas fish from 

BM-MAZ showed the highest differences. 

During summer the analysis indicated significant 

differences between each paired PPD (F = 3.73, P = 

0.014, PPD = 0.0200, for BM-GYM; F = 2.91, P = 

0.024, PPD = 0.0196, for GYM-MAZ; F = 6.96, P = 

0.001, PPD = 0.0223, for BM-MAZ). 
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Figure 4. Dendrogram generated for each season with the UPGMA algorithm, using the Mahalanobis distance matrix of 

the body shape. 

 

The PeCoAs was 62.7% on average. The highest 

value was obtained for MAZ (67.4%), and the lowest 

for GYM (54.0%). Similarly to what occurred in 

winter, there was a lower average assignment error 

between fish from BM-MAZ and higher error between 

fish from GYM-MAZ and GYM-BM (Table 1). Taking 

into account Mahalanobis distances, individuals captured 

during summer in GYM showed a stronger morpho-

logical relationship with fish from BM. The highest 

differences between fish occurred in BM and MAZ 

during both seasons (Fig. 4). According to the Mantel 

test, there was no correlation between the matrix based 
on body shape in winter and summer (P = 0.677). 

Morphometric differences based on sagitta otolith 
shape 

Results obtained using otoliths were relatively similar 

to those found based on body shape. The analysis based 

on the F-test indicated significant differences between 

paired PPD in winter between fish from BM-GYM (F 

= 7.52, P = 0.001, PPD = 0.0640) and BM-MAZ (F = 

12.48, P = 0.001, PPD = 0.721), but not between fish 

from GYM-MAZ (F = 1.98, P = 0.062, PPD = 0.0188). 

However, based on the significant differences found 

using body shape, we considered these groups diffe-

rent; consequently, we performed a CVA for otoliths 

considering the three groups to maximize possible 

morphometric differences. The two canonical variables 

indicated statistically significant differences between 

the groups (Wilk’s lambda = 0.12, P < 0.001 for CV1; 

Wilk’s lambda = 0.43, P < 0.001 for CV2), supporting 

the existence of different morphotypes, according to 

otolith characteristics in winter (Fig. 5). The PeCoAs 

was 67.3% on average, lower than that found based on 

body shape. The highest value was obtained for fish 

from MAZ (78.3%), and the lowest for fish from GYM 

(57.1%) (Table 2). 

The lowest average assignment error occurred 

between the BM-MAZ fish and the highest between the 

GYM-MAZ and GYM-BM fish (Table 2). Based on 

Mahalanobis distances, fish from GYM and MAZ had 

the lowest morphological differences, and fish from 

BM and MAZ showed the highest differences (Fig. 6). 

For data corresponding to summer, the analysis 

based on the F-test indicated significant differences 

between each paired PPD (F = 6.29, P = 0.001, PPD = 

0.0601, for BM–GYM; F = 25.86, P = 0.001, PPD = 

0.1212, for GYM-MAZ; F = 12.10, P = 0.001, PPD = 

0.0853, for BM-MAZ). There were statistically 

significant differences between the groups only for the 

first canonical variable (Wilk’s lambda = 0.14, P < 

0.001), giving support to the existence of different 

morphotypes when taking into account Pacific thread 

herring otolith characteristics in summer (Fig. 5). The 

PeCoAs was 56.8% on average, lower than that found 

in winter and that found for the same season based on 

body shape. The highest value was found in fish from 

MAZ (77.1%), and the lowest in fish from BM (41.6%) 

(Table 2). Similar to what occurred in winter, and to 

what was found for both seasons based on body shape, 

the lowest average assignment error occurred between 

fish from BM-MAZ and the highest between fish from 

GYM-MAZ and GYM-BM (Table 2). Based on 

Mahalanobis distances, fish from GYM-BM had the lowest 

lowest morphological differences, and similarly to what
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Figure 5. Scatter diagram generated from CV1 and CV2 scores for otolith in a) winter and b) summer. 

 

Table 2. Allocation matrix (%) generated from the CVA for the otolith shape. Upper matrix values correspond to winter 

otolith shape analysis (PeCoAs = 67.6%); bottom matrix values correspond to summer otolith shape analysis (PeCoAs = 

56.8%). Values in bold on diagonal of each matrix show correct classification percentages per zone. Sample size: number 

of individuals analyzed per data set. 

 

Zone  
Mazatlán 

(MAZ) 

Bahía Magdalena 

(BM) 

Guaymas 

(GYM) 

Sample 

size 

Mazatlán (winter)  78.3 (n = 29) 5.40 (n = 2) 16.2 (n = 6) 102 

Bahía Magdalena (winter) 22.8 (n = 8)   57.1 (n = 20)    20 (n = 7)  

Guaymas (winter)    20 (n = 6)  13.3 (n = 4)   66.6 (n = 20)  

Mazatlán (summer)  77.1 (n = 27)    8.5 (n = 3) 14.2 (n = 5) 102 

Bahía Magdalena (summer) 11.1 (n = 4)    41.6 (n = 15)   47.2 (n = 17)  

Guaymas (summer)   9.67 (n = 13)    38.7 (n = 12)   51.6 (n = 16)  

 

 

occurred in winter, fish from BM-MAZ had the highest 

differences (Fig. 6). The Mantel test showed no 

significant correlation between the matrix based on the 

otolith shape in winter and summer (P = 0.985). 

DISCUSSION 

It was possible to identify differences in the body and 

otolith shape of the Pacific thread herring O. libertate 
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Figure 6. Dendrograms generated for each season with the UPGMA algorithm, using the Mahalanobis distance matrix of 

the otolith shape. 

 

 

using geometric morphometry, supporting the exis-

tence of three different morphotypes or phenotypic 

stocks in the northwest Mexican Pacific. Body shape 

had a higher discriminant power than otolith shape. In 

all cases, for analyses based on body shape the Partial 

Procrustes Distance, and the two Canonical Variables 

were significant, whereas for analyses based on otolith 

shape differences between Pacific thread herring 

landed in GYM and MAZ were non-significant 

(although marginal P = 0.06) in winter. Only one 

Canonical Variable was statistically significant in 

summer. The results obtained from the a posteriori 

assignation matrix (based on Mahalanobis distances) 

also concur with the previous observations (Vergara-

Solana et al., 2013). An explanation of these diffe-

rences could be related to the amount of cover provided 

to each structure by the landmarks and semi-landmarks 

because the morpho-space can be affected by an 

increase in the number of marks, and the differentiation 

among groups can be more precise (Farré et al., 2016). 

However, since a higher number of marks were used for 

otolith analysis, we consider that otolith shape was not 

over-represented compared with body shape. In all 

cases, we considered a number of specimens bigger 

than the number of landmarks, considering that extra 

landmarks could be redundant. Thus, we believe that 

our results are not indicative of more than a 

methodological effect and that otoliths are less variable 

structures than body shape, as has been observed in 

other species (Vergara-Solana et al., 2013). 

Despite the lower resolution in the detection of 

differences between groups when using otoliths, both 

structures used provided congruent results, indicating 

that body shape and otolith shape of Pacific thread 

herring O. libertate allow the detection of different 

morphotypes in the sampled areas of northwestern 

Mexico. Both indicated that the Guaymas Pacific 

thread herring shared the highest morphological 

affinity with Pacific thread herring from Bahía 

Magdalena and Mazatlán and that Pacific thread 

herring from Bahía Magdalena and Mazatlán presented 
the highest differences. 

Variations in the shape of anatomical structures are 

associated with the age of individuals in species with 

individual growth tending towards allometry (Gould, 

1966; Alberch et al., 1979; Klingenberg, 1998). In the 

present study all analyzed individuals were adults 

(≥120 mm SL) (Berry & Barret, 1963; Jacob-Cervantes 

& Aguirre-Villaseñor, 2014; Pérez-Quiñonez et al., 

2017), so that differences found were not related to the 

allometric effect (Félix-Uraga et al., 2005; Ramírez-

Pérez et al., 2010) In addition, one of the characteristics 

of the use of geometric morphometry is that it 

eliminates differences between configurations that are 

attributable to differences in location, scale, and 

orientation, leaving only differences in shape (Kendall, 

1977; Zelditch et al., 2004). Other factors related to 

genetic differences due to the presence of different 

populations, or due to local environmental factors 

impinging on phenotypic plasticity should be consi- 
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Figure 7. Time-space distribution model of the three-stock hypothesis for sardina crinuda (O. libertate): B: Bahía 

Magdalena stock, G: Guaymas stock and M: Mazatlan stock. The sizes of the arrows do not represent intensities of the 

current; they are indicative of the main direction. 

 

 

dered to explain the differences found between the 
morphotypes (Lin & Dunson, 1999). 

Potential stock movements could be linked to 

latitudinal and longitudinal migration patterns having 

to do with feeding and spawning (Sokolov, 1974; 

Lluch-Belda et al., 1986). Based on this, we suggest a 

conceptual model of spatial displacement of Pacific 

thread herring explain the morphometric similarities 

and dissimilarities of the shape of fish structures from 

the three fishing zone. Seasonal changes in the wind 

pattern play a dominant role in the formation of fish 

groups (Sokolov, 1974). Winds blow from north to 

south in winter, and the California Current (CC) is 

stronger in spring in the study area. During this period 

the influence of the North Equatorial Counter Current 

(NECC) over the coast of the Baja California Peninsula 

decreases (Pavlova, 1966; Hickey, 1979; Talley, 1993; 

Parés-Sierra et al., 1997; Pérez-Brunius et al., 2007) 

favors the upwelling of sub-superficial cold and 

nutrient-rich waters, resulting in the formation of areas 

with high biological productivity off the western coast 

of the Baja California Peninsula and eastern coast of the 

Gulf of California. Consequently, favorable conditions 

are created for feeding by pelagic species such as 

herring, sardines, and anchovies (Sokolov, 1974). 

These physical and biological conditions could allow 

the migration of individuals from Guaymas towards 

areas to the south along the eastern gulf coast, allowing 

the mixing of fish from GYM and MAZ. At the same 

time, the BM individuals initiate their displacement 

towards the south along the western peninsula coast, 

limiting their displacement towards the mouth of the 

Gulf of California (Fig. 7). 

There is a weakening of the CC, and strengthening 

of southerly winds and of the NECC flow in summer 

(Fig. 7) (Pavlova, 1966; Hickey, 1979; Talley, 1993; 

Parés-Sierra et al., 1997; Pérez-Brunius et al., 2007). 

Coastal areas with high biological productivity appear 

on the western part of the Gulf of California, creating 

favorable conditions for BM Pacific thread herring, 

which had started their displacement towards the south 

to continue along the west coast until they reach the 

middle part of the gulf. The individuals that were 

concentrated in the MAZ area move towards the north 

along the coast until they reach the middle part of the 

gulf, and the Pacific thread herring has its maximum 

reproduction (Saldierna-Martínez et al., 1995). These 

authors point out that the highest spawning rates of this 

species occur in summer, with maximum spawning in 

the central part of the gulf, in the area between GYM 

and Punta Lobos, and could explain the high 

morphological similarity between fish from BM and 

GYM in summer. A similar migration mechanism has 

been observed in the Pacific sardine Sardinops sagax 

(Sokolov, 1974; Félix-Uraga et al., 2004, 2005) and in 

the jumbo squid Dosidicus gigas in the Gulf of 

California (Ehrhardt et al., 1983), with movements 

along both gulf coasts and along the western coast of 

the peninsula, depending on conditions in the marine 
environment. 

The results found in this study using body shape and 

otolith shape could have considerable potential effects 

on the detection of phenotypic groups. The use of 

otoliths has been favored in previous studies, mainly 
due to its dual use for age determination as well as 

comparison with other structures (Blood, 2003; 

Edwards et al., 2005; Polat et al., 2005; Vergara-Solana 
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et al., 2013). However, body shape has been shown to 

be useful for species discrimination (De La Cruz-

Agüero et al., 2015; Pérez-Quiñonez et al., 2017) and 

stock delimitation in structured populations (Ramírez-

Pérez et al., 2010; García-Rodríguez et al., 2011; 

Vergara-Solana et al., 2013). Our results suggest that at 

least three Pacific thread herring morphotypes are 

distributed in the northwestern Mexican Pacific and 

that the GYM morphotype has the highest similarity 

with the other two groups (BM and MAZ), depending 

on the time of year. Future analyses should focus on the 

identification of a morphological criterion to distin-

guish among individuals according to the morphotypes 

found, as well as on the evaluation of whether the 

identified phenotypic stocks correspond to different 

populations using molecular analyses. It could provide 

a better understanding of this species  ́ biology and 
reinforce the management of its fishery. 
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