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ABSTRACT. Small-scale fishing (SSF) is a relevant economic activity worldwide, so sustainable development 

will be essential to assure its contributions to food security, poverty alleviation, and healthy ecosystems. 
However, the wide diversity of fisheries, their complexity, and the lack of information limit the ability to 

propose/evaluate management measures and plans and their effects on communities and other productive 
activities. The state of Baja California Sur, Mexico, our study case, ranks as the third place in national fisheries 

production, possesses SSF fleets, has a wide variety of fisheries that share fishing areas, fishing seasons, and 
operating units. In this work, assuming SSF as a complex system were proposed deep learning models (DLM) 

to forecast the catch volumes, evaluate each input variable's importance, and find interactions. Environmental 
variables and catch fisheries were tested in the DLM to estimate their predictive power. Different DLM 

structures and parameters to find the optimal model was used. The variables that presented higher predictive 
power are the environmental variables with R = 0.90. Moreover, when used in combination with the catches 

from other areas, the performance of R = 0.95 is obtained. Using only the catches, the model has an R = 0.81. 

This model allows the use of variables that indirectly affect the system and demonstrates a useful tool to assess 
a complex system's state in the face of disturbances in its variables. 

Keywords: finfish; artisanal fisheries; artificial neural networks; complex systems; mathematical models. 

 

 

 
INTRODUCTION 

Small-scale fishing (SSF) contribute significantly to 

global and local food security, employment, and viable 

livelihoods (Stanford et al. 2017). The importance of 

SSF also extends to culture and heritage, and in many 

instances, they offer a livelihood for many people 

besides employment (Chuenpagdee et al. 2019, FAO 

2020, Mendoza-Portillo et al. 2020). 

Usually, SSF is controlled by fishing effort controls, 

calculated via forecasting biomass, spawning, recruit-

ment, or volume of catch; this approach has been 

successful in some large-scale fisheries. Some efforts 

address single and multi-species reference points 
 

__________________ 
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(Penaluna et al. 2017), ecosystem approach to fisheries 

(Serpetti et al. 2017, Wakamatsu & Wakamatsu 2017). 

However, SSF has not always been so successful, 

considering that their management is affected by poor 

data context, limited surveillance, or bad management 

decisions (Salas et al. 2007, Mahon et al. 2008, Leis et 
al. 2019). 

In this way, SSF requires planned actions supported 

in predictive models that fit the disposition of existing 

information, which is usually insufficient, or low 

quality; but in the end, it is the only data generated in 

most developing countries (Salas et al. 2007, Hilborn & 

Ovando 2014, Pomeroy et al. 2016, de la Barra et al. 

2019). Besides, this sector generally lacks economic  
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resources for research, data collection, management, 

and surveillance. 

SSF presents, among others, the following 

characteristics: multi-species, wide spatial distribution, 

a large number of operating units, decentralized 

operating systems, extensive and diverse market routes, 

administrative and ecosystem boundaries do not 

correspond at all (Fuller et al. 2017). Their management 

consists of multivariable non-linear problems and can 

be understood as complex adaptive systems (Mahon et 

al. 2008). For this case, it is proposed that the fisheries 

of Baja California Sur (BCS) as a complex adaptive 

system (CAS) whose elements are subsystems that 

correspond to the environmental, ecological, fishing, 

economic and social dimensions. Being a CAS, each 

layer or subsystem is interrelated at different levels 

(Mahon et al. 2008).  If we consider the quality and 

availability of data and information from the BCS SSF, 

we face the impossibility of using traditional models, 

which require nonexistent data or expensive to obtain 
and will take time to collect. 

In this context, developing those models' main 

problem is the lack of information and the statistical 

assumptions required to design them (Griffith & Fulton 
2014).  

The recent development of artificial intelligence has 

made it possible to open new inroads into models that 

allow time-series analyses from indirect perspectives. 

Artificial intelligence models, specifically deep learning 

models (DLM), are characterized by their ability to 

predict a variable's value concerning a specific scenario 

(Zhang et al. 2018). The DLM have been used to 

forecast the catches of different fisheries, like mackerel, 

cod, sardine or finfish (Kim et al. 2015, Naranjo et al. 

2015, Kim et al. 2016, Cavieses-Núñez et al. 2018, 

Petatán-Ramírez et al. 2019). DLM has used as input 

variables of different data types, such as satellite 

images of sea spectrograph (e.g. sea surface tempera-

ture) or in situ measurements of the environment, 

fisheries biomass, and trip tickets of the fisheries catch 

(Yáñez et al. 2010, Fernandes et al. 2015, Kim et al. 

2015). Considering the availability of the data and the 

characteristics of the DLM opens the opportunity to 

explore the possibilities of fisheries analysis from other 

perspectives. 

DLM is robust enough for simulations of a fishery. 

However, if the previous points are considered, the 

following questions should be answered: Will it be 

feasible to use deep learning models to simulate 

complex systems such as SSFs in a region? Will they 
be able to identify relationships between fisheries? Will 

the predictive capacity be adequate, considering the 
insufficient data context of the fisheries? 

This article seeks to better understand SSF from the 

complex adaptive system approach for decision-makers 

and others system participants. For this porpoise, the 

SSFs of BCS are proposed as a case study, using the 

available information and DLM, which have shown in 

recent studies the simulation capacity for fisheries. In 

this context, three DLMs are presented, each one 

raising different assumptions. 

MATERIALS AND METHODS 

Study area 

BCS is in the northwest of Mexico above the 28ºN 

parallel, occupying the southern half of the Baja 

California Peninsula. Northern limits with Baja 

California State, eastern with the Sea of Cortés, 

southern, and western with the Pacific Ocean. Its 

capital is the city of La Paz. BCS covers 73,475 km², 
occupying 3.8% of the national territory (Fig. 1). 

Administratively, the state has five municipalities: 

La Paz, Los Cabos, Loreto, Comondú and Mulegé. 

BCS has a population of 712,029 persons (INEGI 

2015). The number of fishers registered is 6891, 

distributed in about 420 localities along the coastline 
(SPAyDA 2015). 

The different fishing locations are related through 

the commercialization lines of fishing production. 

Besides, all neighboring localities integrate a complex 

interconnected system. The localities are distributed 

along both sides of the peninsula, the Pacific coast and 

the Sea of Cortés (Ramírez-Rodríguez et al. 2011, 
Díaz-Uribe et al. 2013). 

The lagoon complex Bahía Magdalena-Almejas 

(BMA) is an essential fishing region in BCS; this zone 

produces almost 60% of the total catches volume. 

Several relevant fisheries developed there, such as 

shrimp, clams, crabs, lobsters, finfish, among others 

(Ojeda-Ruiz et al. 2018). In this region Puerto Adolfo 

López Mateos, Puerto Chale, Puerto San Carlos, Isla 
Margarita are some of the main localities. 

The second region in importance is the Gulf of 

Ulloa; this corresponds to the Pacific's north shore of 

BCS, at the north of BMA, where the abalone, finfish, 

lobster, sharks, and clams are the most important 

fisheries (Ramírez-Rodríguez et al. 2010, Ramírez-

Rodríguez & Ojeda-Ruiz 2012). In this zone can be 

highlight Las Barrancas or San Juanico as the most 
important localities. 

As the third important region, the Cortés seaside of 
BCS. This zone integrates the communities of Mulegé, 

Loreto, La Paz, Los Barriles and Los Cabos; the 

principal fisheries identified are finfish and clams 
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Figure 1. Study region: Baja California Sur, México.  

 

 

(SAGARPA 2010, CONAPESCA 2018). In this 
region, San Cosme Corridor, Agua Verde, Isla San 
Idelfonso, Isla Cerralvo, among others. 

BCS counts around 13 fisheries in almost all 
communities except for abalone and lobster fisheries 
operating in the north. The finfish fishery takes place 
throughout the year in all BCS zones. Due to seasonal 
temporality, the fisheries are the shrimp, warrior crab, 
clam, and shark fishery. BCS has 12 governmental 
offices (Table 1) where fishers from each locality report 
their catches in trip tickets. 

The data 

Trip tickets are the official Mexican document in which 

registered the catch data of each fisher. The data 

obtained by this document are the official catch landing  

reports (OCLR); among other fields of information 

OCLR provides the species caught, the national fishing 

register of the economic unit, landing zone, fishing 

locality, the volume catch, the date, and first-hand sale 

price "on the beach." This database is managed by the 

National Fisheries and Aquaculture Commission 

(CONAPESCA, acronym in Spanish).  

The database consists of trip tickets from BCS from 

2001 to 2017. The species reported by common name 

and the corresponding scientific name were assigned in 

the database, classified within any reported fisheries, 

the captured volume reported in kilograms, and its 

value in Mexican pesos. 

The tickets in the database were classified by four 

zones proposed by Díaz-Uribe et al. (2013). Subse- 
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Table 1. Zoning of the catch landings reports offices. 

 

Zone I Zone II Zone III Zone IV 

Loreto 
La Paz 

Santa Rosalía 

Los Cabos 

Puerto Adolfo López Mateos 
Ciudad Constitución 

Puerto San Carlos 

Bahía Tortugas 
Bahía Asunción 

Punta Abreojos 

Isla de Cedros 

Guerrero Negro 

 

 

quently, a monthly average fishing catch time series 

was structured for each fishery. Table 1 shows the 

landing offices per zone.  

The monthly average of sea surface temperature 

(SST) and chlorophyll-a concentration (Chl-a) was 

obtained through the GEOVANNI platform; those 

variables were selected due to the previous studies that 

used DLM for time series forecast in fisheries shown a 

good performance as a predictor (Kim et al. 2016, 

Cavieses-Núñez et al. 2018). In this case, SST is an 

indirect index of the environment temperature, even 

when the fishery target is not a superficial species. The 

CLA variable was used to evaluate the primary 

productivity in the zone. Those variables were spatially 

averaged for each zone every month to form the time 

series that would later be used in DLM. Also, time 

series of monthly rainfall for each zone were introduced 

to the model for a test, under the logic that higher 

rainfall at a given time, greater the probability that a 

meteorological phenomenon would occur, such as a 

hurricane that prevented the fisherman's tasks or 

modified the ecological environment of the fishery. 

Oceanographic indices like Pacific Decadal Oscillation 

or NIÑO3 have not been used because of the index's 
spatial resolution and the SST's autocorrelation. 

Preprocessing data 

The time series are ratio measurements and arranged as a 

Pandas Data-Frame, indexed by month intervals for each 

zone and fisheries. A maximum-minimum normalization 

method was applied to reduce the noise by the variables' 

magnitude, setting the variables in the 0 to 1 range 

(Kingma & Ba 2015).  

Input variables were created from lagging the 

original time series; those were tested as input in the 

DLM to evaluate the importance of the previous state 

in the system; the ranges tested were three and six 

months, this concept is taken from the stock market 

analysis where it is stated that the slope of a Signal is 

an indicator of possible future values. In this way, the 

input tensioners' structure was as follows: (1, from 1 to 
8 of delayed inputs, 173). The time series was divided 

into three groups, training 80% of data and 20% for 

tests and two years of data validation. 

 

 

 

 

 

 

 

 

 

 
Figure 2. Conceptualization of the model for a node to the 

fisheries system proposed.  

 

To determine autocorrelation and the delay between 

variables, linear correlation analysis and, a cross-

correlation analysis was performed to finfish fisheries 

catch in different areas, and fisheries' catches in the 

study area. An exploratory analysis of the data was 

carried out to understand the catches' main 

characteristics in the BCS fishing system, with which 
trends, proportions, and seasons were obtained. 

The system  

A system can be understood as a conjunct of highly 

interactive elements or agents. In this case, the system 

is composed of the zones proposed by Uribe et al. 

(2013); each zone is interpreted as a subsystem where 

the fisheries are its elements. The links by the zones are 

conceptualized as the interaction done by the market or 

spatial-temporal fishing seasons. The neighborhood of 
a zone is the other element that composes the system. 

The models 

In this article, the ability of DLM to simulate elements 

of a complex adaptive system is evaluated; three DLM 

are implemented to simulate different elements of a 

subsystem in the fisheries dimension, which have as 

input variables catch data from the main SSF of BCS 
grouped by zones and catch as an output variable (Fig. 2). 

A long short-term memory (LSTM) layer, Dense 

layer, MaxPooling layer, and Flatten layer was used 
(Ketkar 2017). Different hyper-parameter architectures 
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Table 2. Attribute setting options for the models. 

 

Hyperparameter 

Bach size 25, 50, 100, 150 

Epoch 100, 150, 250, 500, 1000, 1500 

Optimizer Adamax, adam, rmsprop, sgd 

Loss Mae, smae, mse 

Parameter 

Neurons 5,10,15,25,50,100,200 

Layers 1,2,3,4 

Dropout 0.2 0.4 0.6 

MaxPooling yes / no 

Activation function relu, linear, tansig, tanh 

 

 

for training (number of iterations, batch size, error 

estimator) and model parameters (number of neurons, 

activation functions, number of layers, dropout ratio) 

were tested (Zela et al. 2018); these attributes are shown 
(Table 2).  

The first model evaluates the ability of DLM to 
simulate the response of the catches of different SSF 
(abalone, seaweed, clams, squid, scallops, shrimp, 
warrior crabs, snails, sport-fishes, sea urchin, finfish, 
sharks, tuna, and others) in BCS using as input 
variables (Xi) SST, CLA, rain and historical data of 

catches. This model can be considered general for the 
complex adaptative system fisheries (CASF). The 
DLM has LSTM, rectified linear activation function 
(ReLu), MaxPooling, and Dense layers as presented in 
Figure 3a. 

The second model evaluated simulates the catches 
of the finfish fisheries in one of the main areas of BCS. 
This proposed model as CAS element evaluates the 
interaction between catches of the finfish fishery and 

clams, warrior crabs, and sharks in zone II. Finfish 
fishery and zone II was chosen as the objective of this 
model due to its relevance to BCS´s fisheries (Ramírez-
Rodríguez & Ojeda-Ruiz 2012, Cavieses-Núñez et al. 
2018, Méndez-Espinoza et al. 2020). The second 
model's input variables were monthly SST data, CLA, 

and the finfish catches; this model comprises three 
layers, one LSTM, and two Dense layers, as shown in 
Figure 3b. 

A third model simulates the possible interaction 

between captures of the essential SSF for BCS in 

different areas. For this case, it is stated that each BCS 

area is a node with its subsystems, for this model, the 

idea of that the nodes are connected by market demand, 

the target fishery of this model was finfish, the input 

data for the model are the monthly catches of each of 

the finfish fisheries in the other three zones, and the 

output data of the model are the captures of zone 2. This 

model is shown in Figure 3c; it has five neuron layers, 

combining LSTM and Dense layers. A t-student hypo-

thesis test was carried out between each model's 

forecast and real data to evaluate the input variables' 

predictive power. 

In the process of analysis of data and creation of the 

models, a virtual environment in the software anaconda 

with a version of Python 2.7 was used, with the 

following packages: Pandas 0.23.0, Tabulate 0.8.2, 

Matplotlib 2.2.2, Seaborn 0.8.1, Datetime, Sklearn, 

Numpy 1.13.3, Keras-GPU 2.2.2, Scipy 1.1.0, 

Tensorflow-GPU, Statsmodels 0.9.0, Tensorboard 

1.10.0, JupyterLab 0.32.0. All the models and their 

python codes can be found on GitHub [https://github. 
com/rcavieses/fisheriesnode]. 

RESULTS 

From the exploratory analysis of the data, the results of 

cross-correlation analysis of the input variables used in 

models 2 and 3 with the target variable can be seen in 

Figure 4. In Figure 4a, only the warrior crab and shark 

fisheries have high correlations (R > 0.8) for lags of -2.5 

months, which corroborates that both fisheries are 

carried out in different seasons. The environmental 

variables present correlations with fisheries catch that 

indicate a relationship, which justifies their use in the 

DLM. Figure 4b presents the cross-correlations (R > 

0.75) between the catches of the finfish fishery from 

different areas; this fishery is carried out most of the 

year and is made up of multiple target species, they also 

share intermediaries in the purchase of products, which 
contributes to a high correlation.  

When comparing the proportions of catches by area 

and catch, we see that clam fishing contributes 51%, 

followed by finfish fishing with 31.4%, and it is found 

that the zones that contribute most of the production are 
the I and II (Fig. 5). 

The results of the analysis of the predictive power 

of the input variables presented to Model 1 (Table 3) 
show which fisheries have a better forecast performan-
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Figure 3. Deep learning models for small-scale fishing catches. 

 

 

Figure 4. a) Cross-correlation analysis of input variables for Model 2, b) cross-correlation analysis for Model 3.  

 

 

ce (marked in bold), and there is statistical evidence to 

affirm that the data from forecast and real data are not 

significantly different (P > 0.05). It should be noted that 

the model was not general enough since the predictive 

power for the scallop and warrior crab fishery has 

significant differences between the prognostic and 

actual value (P < 0.05). 
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Figure 5. a) Proportion of total catches per fisheries in Zone 2, b) proportion of total catches per zone.   

 

 

Table 3. Evaluation of predictive power for Model 1 (in bold means significant values). RMSE: root mean squared error, 
R: correlation coefficient, AIC: Akaike information criteria, BIC: Bayesian information criteria, P-value: probability value.  

 

Fisheries RMSE R AIC BIC P-value t-statistic 

Abalone 3669 0.99461 2501 2609 0.347 -0.2093 

Seaweed 7 0.98761 630 738 0.694 -0.3949 

Clams 416030 0.35734 3902 4010 0.0095 -2.6593 

Squids 993428 0.86205 4159 4267 0.0001 -4.2532 

Scallops 3001 - 2442 2550 0.0001 4.4438 

Shrimp 5463 0.64891 2619 2727 0.1098 -1.6202 

Crabs 14969 0.28563 2918 3026 0.0002 4.1427 

Snails 145248 0.87819 3590 3698 0.2588 -1.1388 

Sport-fishes 7435 0.98186 2711 2818 0.8743 -0.1589 

Sea urchins 2117 -0.15749 2339 2447 0.0908 1.7337 
Finfish 13757 0.70319 2893 3001 0.0048 2.9412 

Warrior crab 5692 0.83997 2631 2739 0.0136 2.5499 

Sharks 98946 0.93667 3477 3585 0.0273 2.2583 

Tuna 112321 0.91811 3514 3622 0.0826   -1.7600 

Others 23316 0.41819 3049 3157 0.0626 1.9091 

 

 

The performance of each input variable's predictive 

power is affected by the delay applied to the inputs 

(Table 4). Except for SSF sharks catch, there have not 

found significant differences between the forecast and 
real data (P > 0.05).  

If we consider the values of BIC and AIC, we can 

see that they do not have significant differences in 

terms of the number of variables that are entered into 

the model, on the other hand, there is a better 

correlation coefficient R = 0.982 when a delay equal to 

six months and as input variables we have TSS, Chl-a, 

clams, and shrimp. In Figure 6a, we can see that the 

model, using all the input variables and using a six-

month lag, follows the real catch data trends in the 

finfish fishery; this observation confirms that there is 
no effect of the seasonality of data on the forecast. In 

this case, the bands from the standard error to the first 
standard deviation are presented. 

Corresponding to the analysis of the predictive 

power of the input variables in Model 3 (Table 5) who 

considers the effect between zones, we can evaluate the 

effect between zones when only the fisheries catches 

are entered as input variables, in this case, the other 

zones have an R = 0.933 (P > 0.05) with a six-month 

lag of the variables. When all the input variables are 

tested, the AIC = 3779 and BIC = 3837 indices indicate 

a better model than only using the capture variables 

from other areas or only using the environmental 

variables. When the input variables are considered 

separately for the model, we can see a high relationship 

with zone 3 (R = 0.897, P > 0.05); this relationship is 

partly because both areas are located on the Pacific 

Ocean coast. On the other hand, the t-test for zone 1 has 
no significant relationship with zone 2 (R = 0.739, P < 

0.05), this result indicates that there is not only a spatial 
relationship since these zones are in the Sea of Cortés. 
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Table 4.  Evaluation of predictive power for input in Model 2. R: correlation coefficient, AIC: Akaike information criteria, 

BIC: Bayesian information criteria, SST: sea surface temperature, Chl-a: chlorophyll-a concentration in sea surface by 

MODIS-aqua. 

 

Variables 
Delay 3  Delay 6 

R AIC BIC P-value t-student  R AIC BIC P-value t-student 

SST, Chl-a, clams, shrimp, warrior crab, sharks 0.953 3857 3924 0.229 1.237  0.925 3868 3999 0.177 1.397 

SST, Chl-a, clams, shrimp, warrior crabs 0.936 3825 3884 0.421 0.820  0.931 3851 3964 0.228 1.240 

SST, Chl-a, clams, shrimp 0.915 3805 3854 0.461 0.750  0.982 3813 3907 0.176 1.400 

SST, Chl-a, clams 0.894 3864 3904 0.258 1.163  0.920 3837 3913 0.188 1.359 

SST, Chl-a 0.815 3966 3997 0.078 1.866  0.917 3842 3900 0.144 1.515 

SST 0.839 3886 3907 0.339 0.977  0.949 3793 3833 0.188 1.358 

Chl-a 0.832 3882 3903 0.348 0.959  0.885 3769 3808 0.398 0.862 

Clams 0.685 3924 3946 0.357 0.943  0.727 3883 3922 0.306 1.048 

Shrimp 0.848 3873 3894 0.280 1.110  0.882 3826 3866 0.515 0.663 

Warrior crabs 0.484 3985 4007 0.321 1.018  0.172 3982 4021 0.427 0.766 

Sharks 0.440 4029 4050 0.074 1.903  -0.047 4032 4071 0.022 2.564 

 

 

Figure 6. Forecast vs. real data of finfish catches in 2016. a) Model 1, b) Model 2.  

 
 

Regarding the validation of the model presented 

(Fig. 6), it can be noted that the trend continues with a 
slight underestimation. 

DISCUSSION 

In this study, we proposed a deep neural network model 

that seeks relationships between the catches of SSF in 

BCS, and environmental variables, to provide a 

significant comprehension of the fisheries system and 

be an alternative method for analyzing the interaction 

between fisheries, zones, and the environment. A tool 

with the power to predict futures catches by using the 

available information on accessible databases and a low 
cost. It is important to mention that fisheries manage-

ment in Mexico is done in a poor data context, as many 

others countries worldwide (Mendez-Espinoza et al. 

2020). 

Other authors such as Fuller et al. (2017) and 

Trifonova et al. (2017) have used the analysis of 

topological networks to describe the processes of 

interaction between various fisheries in multiple zones 

connected through markets. These analyses allow us to 

understand the degree of connectivity between the 

different factors within an environment; however, it 

does not simulate these topological networks' responses 
to external variables and changes. 

Model 1, whose results are in Table 3, presents 

sufficient statistical evidence to consider that its 

predictive capacity is adequate and has the quality to 

make forecasts of the catch trends of different fisheries 
simultaneously. 

Table 5. Evaluation of predictive power for inputs in Model 3. *R: coefficient correlation; AIC: Akaike information criteria; 
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BIC: Bayesian information criteria, ZN1: catches in Zone 1, ZN3: catches in Zone 3, ZN4, catches in Zone 4, Chl-a: 

Chlorophyll-a concentration in sea surface by MODIS-aqua. 

 

Variables 
Delay 3   Delay 6  

R AIC BIC P-value t-student  R AIC BIC P-value t-student 

SST, Chl-a, ZN1, ZN3, ZN4 0.906 3779 3837 0.629 0.49  0.927 3695 3808 0.783 0.279 

SST, Chl-a, ZN1, ZN3 0.911 3756 3806 0.68 0.419  0.932 3755 3849 0.655 -0.453 

SST, Chl-a, ZN1 0.908 3780 3820 0.527 0.643  0.964 3560 3636 0.92 -0.101 

SST, Chl-a  0.726 3942 3973 0.205 1.314  0.767 3835 3893 0.448 0.775 

SST 0.84 3878 3899 0.27 1.134  0.768 3828 3868 0.397 0.864 

Chl-a  0.885 3894 3915 0.161 1.452  0.862 3741 3780 0.978 0.028 

ZN4 0.631 3940 3962 0.361 0.936  0.81 3801 3841 0.514 0.666 

ZN3 0.897 3771 3792 0.575 0.569  0.952 3572 3611 0.856 0.184 

ZN1 0.739 3888 3910 0.517 0.661  0.656 3853 3892 0.783 0.279 

ZN1, ZN3, ZN4 0.894 3782 3822 0.632 0.485  0.933 3703 3779 0.941 0.076 

 

 

If we focus on the forecasting capacity of Model 1 

for warrior crab and shark fisheries, we can see that it 

is accurate. These fisheries report catches throughout 

the year despite having temporary closures as a 

management tactic and protection of seasonal 

reproduction periods (Ramirez-Amaro et al. 2013, 

CONAPESCA 2018, Méndez-Espinoza et al. 2020).  

Also, they present their highest catches in different 

periods of the year. It has also been observed that they 

do not share operational units (Ramírez-Rodríguez & 

Ojeda-Ruiz 2012, Ramirez-Amaro et al. 2013, Méndez-

Espinoza et al. 2020). Considering the above, the 

generalist model (Model 1) could simultaneously simu-

late both fisheries' catch trends. 

Zones 2 and 3 are located at the Pacific shore, share 

similar fleets, and the finfish fisheries extract almost the 

same species (Cota-Nieto et al. 2018, Ojeda-Ruiz et al. 

2018). These similitudes are supported by the statistical 

evidence shown in the correlation analysis and indicate 

that the differences are only administrative, as was 
observed by Díaz-Uribe et al. (2013). 

The results of the DLM presented in this paper 

complement the interaction analysis techniques 

between fisheries, such as complex adaptive systems 

and or experts’ agents in artificial intelligence. Those 

DLM could be used to simulate the environment (the 

CAS state in a specific frame of time) where the expert 

agents have to make decisions. Another technique used 

to describe the interaction between fisheries and their 

environment is the Bayesian probability networks 

(Trifonova et al. 2015), which explains fisheries' 

behavior in the face of changes in the environment. 

However, this technique uses preliminary fishery 

information, which requires in situ studies that describe 
the biology of the resource, as well as fishing 

techniques and effort, or the relationship of the target 

species with its ecosystem, among other data. This 

information is hardly available in small-scale fisheries 

in developing countries, such as Mexico. The models 

proposed by Kim et al. (2015), Naranjo et al. (2015) and 

Cavieses-Núñez et al. (2018) focused on time series 

forecasting, implementing deep neural networks with 

applied environmental variables as input, and catch as 

the target variable. These authors presented similar 

performances to those presented in this article, 

confirming that the deep learning techniques may solve 

fishing modeling problems considering different types 

of variables. 

The model we proposed allows us to indirectly 

identify the interaction between the catches of the SSF 

occurring in the same zones or the interaction from 

zone to zones. The identification of interaction level 

occurs through the prediction power of an input 

variable. As an instance, the results present us evidence 

that clam fishery could be identified as a factor related 

to finfish fishery catch with an R = 0.685 (P = 0.357), 

but shrimp fisheries have a prediction power of R = 

0.848 (P = 0.280), in this case, shrimp fisheries have 

more expectation of affecting the finfish fishery. When 

catches of finfish per zones are used as inputs, each 

zone's predictive power could be interpreted as the 

relationship between zones, and the model can simulate 

the responses to changes in the system. 

Wilson (2006), collected the characteristics of the 

complex adaptive systems of fisheries, nature, and their 

interaction with humans, promoting that management 

strategies and policies should not only focus on 

controlling resources. This proposed deep learning 

model supports the idea that fishery resource manage-

ment strategies cannot be specialized in a single 

species, metier, or community; on the contrary, they 
must be inter-fishery and inter-zone strategies. This 

complexity in fisheries may hinder the management as 

long the management meta-levels are not well defined, 
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understanding the different fishery interactions, the 

actors, and the community's needs, as different levels 

of management. In this way, the management strategies' 

impact on a node would be predictable and adapted to 
the community's needs and the whole system. 

CONCLUSIONS 

DLM can simulate the response of the catch variable of 

the finfish fishery to changes in the environment, such 

as temperature or primary production, and catch 

volumes of other fisheries. DLM shows the feasibility 

of simulating the interaction between the different 

elements of a CAS and evaluating the level of 

interaction. The capacity to handle the poor data quality 

of those models is adequate to be recommended as a 

tool to simulates fisheries systems. However, it is 

highly recommended to explore these models' ability 

and capacity to perform analyses of complex adaptive 
fisheries systems. 

According to our results and considering the use of 

other tools in this context, the deep learning ability to 

find not linear relationships between variables is one of 

the most significant advantages, mainly when a deep 

understanding of the operation of fishing systems is not 

required and prioritized the ability to simulate in 

scenarios posed due to immediate need. 

It is essential to highlight that the development of 

artificial intelligence is advancing rapidly. We 

suggested investigating this technology's applicability 

to the different problems facing the fishing sector, such 

as expert agents' cases, to develop decision-making 

models that evaluate the actors' response to different 
management measures. 
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