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ABSTRACT. Allometric length-weight relationships are traditionally analyzed using the Huxley model, which 

assumes a lognormal distribution of errors. Still, other models have been successfully evaluated to describe these 

relationships, and it has been found that the distribution of errors is not necessarily lognormal. Two data sets of 

carapace width and weight, composed of 1,554 females and 2,531 males of Callinectes bellicosus (Stimpson, 

1859), were fitted to five models to address this problem, which included: Huxley model, quadratic, cubic, 

breakpoint and two-segment. Lognormal distribution of the residuals was first assumed, but the goodness-of-fit 

test did not confirm this assumption, and the QQ plots revealed heavy tails. As an alternative, logistic distribution 

of the residuals was assumed, and the goodness-of-fit test and the QQ plots supported this. The Akaike 

information criterion (AIC) was used to select the best models. When a lognormal distribution of the residuals 

was assumed, the best model for females was the two-segment model and the cubic model for males. In contrast, 

with the logistic distribution, the best model was the two-segment model for both sexes. Furthermore, AIC was 

smaller in models with error loglogistic distribution than lognormal distribution. The two-segment model is 

associated with size at maturity in both sexes, and each segment represents juvenile and adult crabs. It is 

concluded that it is important to confirm the assumptions of the distribution of the residuals when fitting models 

to data because a wrong assumption can result in an erroneous model selection. 

Keywords: Callinectes bellicosus; allometric growth; biphasic models; Akaike information criterion; additive 

and multiplicative error terms; size at maturity 

 

 

INTRODUCTION 

Decapod crustaceans typically undergo morphological 

changes associated with the transition from juvenile to 

adult stages, including the size and thickness of chelae 

in males and the abdomen in females (Corgos & Freire 

2006, Nunes-Pralon & Negreiros-Fransozo 2008, 

Williner et al. 2014). In the brown crab Callinectes 

bellicosus, females exhibit a change in abdomen shape, 

transitioning from a triangular form during the juvenile 

stage to an oval shape in the mature stage (Espinoza-

Ahumada 2019). This alteration in the shape of the ab- 

 
______________ 

Associate Editor: Víctor Sanz 

 

domen in mature females provides more space than the 

triangular form for carrying and incubating fertilized 

eggs until hatching. In this species, males are larger 

than females, but the transition from juvenile to mature 

stages reveals a more noticeable change in females than 

in males. Nevertheless, physiological maturity involves 

the growth of the gonad inside the exoskeleton, an 

organ that was only incipient in the juvenile stage. 

Consequently, a change in the shape of both male and 

female crabs is expected to accommodate the growth of 

this organ. 
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Studies on allometric relationships of different body 

parts in crustaceans identify different points of change 

in relative growth among the various parts 

(Katsanevakis et al. 2007). 

The length-weight relationships (LWR) of aquatic 

organisms can be visualized as a relative volume 

growth in contrast with the organism's size. The volume 

has three lineal measures, longitude, width, and height, 

which will integrate into the organism's weight 

(Rodríguez-Domínguez et al. 2015). These relation-

ships are commonly analyzed using a potential function 

like Huxley's 𝑌 = 𝑎𝑋𝑏  (Huxley 1932), and with a 

logarithmic transformation of the original data, a linear 

relationship of the form Ln(𝑌) = Ln(𝑎) + 𝑏Ln(𝑋) is 

obtained. The slope of this function (b) is known as the 

allometric coefficient, where a value of 3 for this 

coefficient is a reference for isometry, and different 

values indicate allometry. However, this function 

assumes that the allometric coefficient is constant, 

regardless of the organism's size. It has also been 

observed that some allometric relationships between 

different parts of aquatic organisms vary with the size 

of the organism (Katsanevakis et al. 2007, Rodríguez-

Domínguez et al. 2018). Alternative models to detect 

these changes in the allometric coefficient with the 

organism's size include second-order (quadratic) and 

third-order (cubic) polynomial, breakpoint, and two-

segment models. The last two detect inflection points in 

the allometry change that may occur during the 

transition from the juvenile to adult phases. 

The paradigm of model selection and multimodel 

inference involves choosing the best model from a set 

of candidates fitted to observed data based on goodness 

of fit, expressed as the maximum likelihood of a 

function given the data, and the principle of parsimony. 

These two criteria are integrated into the Akaike 

information criterion (AIC), and the best model is the 

one that archives the lowest AIC, indicating that the 

errors have a probability distribution closer to the 

assumed probability distribution in the likelihood 

function used (Burnham & Anderson 2002).  

When fitting a mathematical model to observed data 

on relative growth or the LWR of aquatic organisms, 

one of the assumptions is the normality of errors. If 

there is evidence that the error is multiplicative and 

follows a lognormal distribution, the original data or 

errors are transformed using the natural logarithm to 

achieve normalization. However, the fulfillment of 

normality is often assumed and not verified in many 

published works (Ortega-Lizárraga et al. 2021, Leyva-

Vázquez et al. 2022), which can have implications for 

the selection and certainty of the chosen models as the 

best fit. 

The LWR of aquatic organisms generally exhibits a 

scatterplot with increasing variance with size, 

indicating a certain degree of heterogeneity. Hence, it 

is common practice to logarithmically transform the 

data before fitting an allometric model, attempting to 

satisfy two assumptions: homogeneity of variances and 

normality of errors (Packard 2014, De Giosa & 

Czerniejewski 2016, Dash et al. 2023, Jurado-Ruzafa & 

Hernández-González 2024) 

In the literature, one frequently encounters allometric 

studies in which assumptions are assumed to hold 

without verification (Packard 2014, Orlov et al. 2022, 

Olentiona et al. 2023, Song et al. 2023), which can have 

consequences for the selection and certainty of the 

model chosen as the best fit. 

Montesinos-López et al. (2019) used an allometric 

model of the Huxley type to analyze the LWR of leaves 

from a marine alga. They obtained an inflated error 

distribution that did not comply with the normality 

assumption. Subsequently, they tested a logistic 

distribution with heterogeneous error variance, 

improving the model's goodness of fit. On the other 

hand, Villa-Diharce et al. (2022) addressed the 

allometric relationship between leaf area and weight of 

the same marine alga. They observed a failure in the 

assumption of normality of errors. They resolved this 

by assuming a mixture distribution of two normal 

variables. However, both the logistic distribution and 

the mixture distribution of normal may be closely 

related, as it has been shown that the scale mixture of 

standard normal distributions can represent the logistic 

distribution (Stefanski 1991). 

In this work, we propose using the multimodel 

selection approach to choose the best model for the 

allometric relationship between cephalothorax width 

and weight of the brown crab C. bellicosus. The 

goodness of fit was compared under the assumptions of 

normality and logistic distribution of errors. The 

hypothesis is that errors do not conform to a normal 

distribution, and the logistic distribution will provide a 

better fit, influencing the selection of the best model 

compared to when a normal distribution is assumed. 

MATERIALS AND METHODS 

Measures were taken from a data sample of 4,089 

individuals of the species C. bellicosus. Specifically, 

the carapace width (CW) was measured and identified 

as x, and the weight was denoted as y. These individuals 

were collected from the Santa Maria Bay in Sinaloa, 

México. Among them, 2,531 are males, and 1,558 are 

females (Rodríguez-Domínguez et al. 2018). Crusta-
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ceans have the characteristic of autonomously shedding 

some of their appendages as an escape response to a 

predator attack or when the appendage becomes stuck 

in the structure (such as traps or fishing nets). For the 

analysis, only complete individuals were considered to 

avoid variations in weight not associated with CW. 

Additionally, it's important to note that specimens were 

weighed immediately after capture to prevent weight 

variations associated with handling in ice or refrigeration. 

According to the scatter plots of CW against weight, 

with increasing variability as the predictive variable x 

(CW) increases, the error term acts multiplicatively. 

Thus, the traditional allometric model takes the form: 

𝑦 = 𝛼𝑥𝛽𝛿                              (1) 

where 𝛿 = 𝑒𝜖, with 𝜖 distributed according to a normal 

distribution with mean zero and standard deviation 𝜎. 

Therefore, in the geometric (logarithmic) scale, the 

following expression for the traditional allometric 

model (with logarithmically transformed data) is used: 

𝑙𝑜𝑔(𝑦) = ⁡𝑙𝑜𝑔(𝑎) + 𝛽 × 𝑙𝑜𝑔(𝑥) + 𝜖 

where 𝑥 is the CW, y is the weight, and 𝜖 is the error 

term, usually assumed to be normally distributed as in 

model (1). In addition to this model, four other models 

were considered, which are extensions of the traditional 

model where the allometric coefficient 𝛽 is a function 

of log(𝑥), not constant. Two extensions were initially 

considered, where the allometric coefficient is a log(𝑥) 

function, respectively: 

𝑦 = 𝛼𝑥𝛽1+𝛽2log⁡(𝑥)𝛿                     (2) 

and 

𝑦 = 𝛼𝑥𝛽1+𝛽2 log(𝑥)+𝛽3[log⁡(𝑥)]
2
𝛿             (3) 

Recent literature uses quadratic and cubic models 

for allometric analysis, such as those used here (Zhu et 

al. 2021). 

Two other models are extensions of the traditional 

allometric model models that have two different values 

of the allometric coefficient 𝛽 before and after the value 

of⁡𝑥, called the breakpoint 𝑥𝑏 (Halley, 2016, Tsuboi et 

al. 2018) These models, known as the breakpoint model 

and the two-segment model, respectively, are: 

𝑦 = 𝛽0 (
𝑥

𝑥𝑏
)
{𝛽1+

𝛽2
2
[𝑠𝑔𝑛(𝑥−𝑥𝑏)+1]}

𝛿,           (4)  

and 

𝑦 = 𝛽0𝑒𝑥𝑝 {
𝛽3
2
[𝑠𝑔𝑛(𝑥 − 𝑥𝑏) + 1]} (

𝑥

𝑥𝑏
)
{𝛽1+

𝛽2
2
[𝑠𝑔𝑛(𝑥−𝑥𝑏)+1]}

𝛿 

(5) 

The regression models were fitted following the 

maximum likelihood criterion, assuming that the error 

term acts multiplicatively with a lognormal distribution 

on the arithmetic scale. 

Assuming errors with lognormal distribution, we 

maximize the following log-likelihood function, 

𝑙(𝜃) = ∑ {−log⁡(𝑦𝑖) −
1

2
𝑙𝑜𝑔(2𝜋𝜎2) −

1

2𝜎2
[𝑙𝑜𝑔(𝑦𝑖) − 𝜇𝑖]

2}𝑛
𝑖=1     (6) 

where the form 𝜇𝑖 depends on the fitted model. Thus, 

in the first three traditional models (Eqs. 1-3), the 

following expressions are obligated,  

𝜇𝑖 = log(𝛼) + 𝛽1 × 𝑙𝑜𝑔(𝑥), 

𝜇𝑖 = log(𝛼) + 𝛽1 × 𝑙𝑜𝑔(𝑥) + 𝛽2 × [𝑙𝑜𝑔(𝑥)]2⁡, and 

𝜇𝑖 = log(𝛼) + 𝛽1 × 𝑙𝑜𝑔(𝑥) + 𝛽2 × [𝑙𝑜𝑔(𝑥)]2 + 𝛽3 ×
[𝑙𝑜𝑔(𝑥)]3, respectively. 

In the case of models with a changepoint, the 

following expressions are obtained: 

𝜇𝑖 = log(𝛽0) + {𝛽1 +
𝛽2

2
[𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑏) + 1]} [𝑙𝑜𝑔(𝑥𝑖) −

𝑙𝑜𝑔(𝑥𝑏)], and  

𝜇𝑖 = log(𝛽0) + {𝛽1 +
𝛽2

2
[𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑏) + 1]} [𝑙𝑜𝑔(𝑥𝑖) −

𝑙𝑜𝑔(𝑥𝑏)] +
𝛽3

2
[𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑏) + 1]  

for the breakpoint models and two-segment models, 

respectively. 

In the case of the breakpoint model, it can be 

demonstrated that the intercepts of the straight lines 

𝐸[𝑙𝑜𝑔(𝑦)|𝑥] with the y-axis are: 

𝛽0
∗ = {

𝑙𝑜𝑔(𝛽0) − 𝛽1𝑙𝑜𝑔(𝑥𝑏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 𝑥𝑏
𝑙𝑜𝑔(𝛽0) − (𝛽1 + 𝛽2)𝑙𝑜𝑔(𝑥𝑏)⁡⁡⁡𝑥 ≥ ⁡ 𝑥𝑏

 

and the slopes are: 

𝛽1
∗ = {

𝛽1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 𝑥𝑏
𝛽1 + 𝛽2⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ ⁡𝑥𝑏

 

In the case of the Two-segment model, these 

intercepts are: 

𝛽0
∗ = {

𝑙𝑜𝑔(𝛽0) − 𝛽1𝑙𝑜𝑔(𝑥𝑏)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 𝑥𝑏
𝑙𝑜𝑔(𝛽0) + 𝛽3 − (𝛽1 + 𝛽2)𝑙𝑜𝑔(𝑥𝑏)⁡⁡⁡⁡𝑥 ≥ ⁡𝑥𝑏

 

and the slopes are given by: 

𝛽1
∗ = {

𝛽1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 < 𝑥𝑏
𝛽1 + 𝛽2⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ ⁡ 𝑥𝑏

 

When we assume that the multiplicative error has a 

log-logistic distribution, the log-likelihood function 

takes the following form: 

𝑙(𝜃) = −𝑛𝑙𝑜𝑔(𝜎) − ∑ 𝑙𝑜𝑔(𝑦𝑖)
𝑛
𝑖=1 −∑ {[

log(𝑦𝑖)−𝜇𝑖

𝜎
] +𝑛

𝑖=1

2𝑙𝑜𝑔 [1 + 𝑒𝑥𝑝(−[
(log(𝑦𝑖)−𝜇𝑖)

𝜎
])]}                                    (7) 

Taking, as in the case of lognormal log-likelihood, 

the mean function 𝜇𝑖 corresponds to the model we fit. 

Usually, these log-likelihoods are maximized nume-

rically. 
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The AIC, which allows us to rank models according 

to their goodness of fit, is given by:  

𝐴𝐼𝐶 = −2𝑙(𝜃) + 2𝑝 (Akaike 1973, Burnham & 

Anderson 2002)  

The AIC value represents the amount of information 

lost when fitting the model; therefore, we choose the 

one with the lowest AIC value as the best model when 

comparing various models. These statistics do not tell 

us whether the fit is appropriate or incorrect. We can 

use goodness-of-fit tests such as the Anderson-Darling 

test, the Kolmogorov-Smirnov test (Conover 1971), or 

the Shapiro-Wilk test (Shapiro & Wilk 1965). Quantile-

quantile plots are often used as graphical tests of 

normality or to assess the quality of the fit of some other 

distribution to a dataset. When the fit is appropriate, the 

quantile-quantile plot (Stephens 1997) follows a linear 

pattern. In this work, in addition to the normal quantile-

quantile plot, a logistic quantile-quantile plot was used 

to verify that a set of residuals follows a logistic 

distribution. Normality tests of error terms are 

necessary to ensure the inferences' validity. In addition 

to the classical tests, examples of normality tests related 

to central tendency and dispersion statistics are 

presented in the literature (Ghasemi & Zahedias 2012, 

Das & Imon 2016, Mishra et al. 2019). There are 

several statistical functions in R, which are useful in the 

statistical analysis of allometric data (Warton et al. 

2012, Kassambre & Mundt 2020), so all calculations 

developed in this paper were performed using the 

statistical computing language R (R Core Team 2023). 

RESULTS 

In the brown crab, males are larger (30 and 180 mm for 

the cephalothorax) than females (30 and 140 mm for 

the cephalothorax), as shown in Figure 1. The 

maximum likelihood estimates of the parameters for the 

five fitted models, assuming multiplicative errors and 

following a lognormal distribution, as is commonly 

considered, are shown (Table 1). According to the 

Akaike criterion, the cubic model fits better for males, 

as this model has the lowest AIC value. In the case of 

females, the best fit is not provided by a traditional 

model but by a model with a changepoint, such as the 

two-segment model, which has the lowest AIC. In both 

cases the closest competing model has a distance in the 

AIC value greater than 10. However, all five models 

produce very similar curves (Fig. 1). 

To understand the distribution of residuals on the 

logarithmic scale for models with the least satisfactory 

fit (linear) and the best fit (two-segment) for females, 

we observe the QQ-normal plots shown in Figure 2. 

The QQ-normal plots exhibit sets of points that 

follow a linear pattern in the center. Still, at the 

extremes, they deviate from the line, indicating that the 

distribution of residuals on the geometric scale has 

heavy tails. This observation holds for all model fits, 

suggesting that the error terms exhibit over-dispersion 

compared to the normal distribution. The results of the 

Anderson-Darling hypothesis tests for normality are 

shown (Table 2). 

Considering that the error terms of the fitted models 

exhibit over-dispersion compared to the normal 

distribution, the models were adjusted by changing the 

normal distribution of errors to a logistic distribution 

because the logistic distribution has heavier tails than 

the normal distribution, as seen in Figure 3. 

In Table 3, we have the estimates of the fits for the 

five considered models with error terms following a 

log-logistic distribution. Now, the best model was the 

two-segment model in both sexes. The inflection point 

of this model is 111.5 mm in females and 126.03 mm 

in males, and in both sexes, a steeper slope is observed 

before the inflection point than after it. For females, the 

slope is initially 3.289; after the changepoint, it is 

2.834. For males, the slopes of the two segments range 

from 3.215 to 2.936. 

The AIC values, comparing Tables 1 and 3, are 

lower when the error distribution is log-logistic than 

when it is lognormal, indicating that the log-logistic 

distribution fits better than the lognormal distribution 

on the arithmetic scale. 

The logistic quantile-quantile plots are shown (Fig. 

4), constructed with the residuals (on the logarithmic 

scale) of the linear and two-segment models, with error 

terms following a logistic distribution. In contrast to the 

QQ-normal plots shown in Figure 2 (for the same 

models), we now observe that the plots have a fairly 

linear pattern, with the extreme points very close to the 

reference straight line in each case. The two models 

with logistic error have a good fit of data on 

cephalothorax width-weight for females. 

Table 4 displays the results of the Kolmogorov-

Smirnov test to examine whether the error on the 

geometric scale follows a logistic distribution. The 

logistic distribution is not rejected in any of the five 

models fitted to the data for females and males. 

The point estimates of the parameters for the five 

analyzed models have been provided (Tables 1 and 3). 

Sometimes, it is preferable to provide estimates with 

intervals, as they give information about ranges where 

the true values of the parameters may lie. Additionally, 

these intervals provide information about the quality of 

the estimates; the narrower the confidence interval, the 
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Figure 1. Scatter plot of cephalothorax width and weight for 4,089 brown crabs, of which a) 1,558 are females and b) 2,531 

are males. Under the assumption of normal distribution of errors, the fitted curves for the five models are overlaid.  

 

Table 1. Estimates of the parameters for the considered models, assuming multiplicative error term, distributed in a 

lognormal form. AIC: Akaike information criterion. In bold, best model with minor AIC. 

 

Sex Model 𝛽̂0 𝛽̂1 𝛽̂2 𝛽̂3 𝑥𝑏 𝜎̂2 𝑙(𝜃) AIC 

Females Linear -10.933 3.346    0.018 -5,713.0 11,432.1 

 Quadratic -6.059 1.140 0.249   0.018 -5,701.0 11,410.0 

 Cubic 12.662 -11.702 3.177 -0.222  0.018 -5,700.0 11,410.1 

 Breakpoint 3.473 3.274 0.352  74.8 0.018 -5,696.2 11,402.6 

 Two segment 4.788 3.283 -0.437 0.096 110.6 0.018 -5,688.5 11,389.1 

Males Linear -10.668 3.285    0.022 -10,577.9 21,161.9 

 Quadratic -5.390 0.943 0.258   0.021 -10,530.3 21,068.6 

 Cubic 18.828 -15.617 4.013 -0.282  0.021 -10,518.5 21,047.1 

 Breakpoint 3.467 3.156 0.462  75.0 0.021 -10,524.6 21,059.1 
 Two segment 3.626 2.917 0.463 0.032 79.3 0.021 -10,523.9 21,059.8 

 

 

higher the reliability of the estimation. There are 

different techniques for calculating confidence 

intervals for the parameters of interest. This article 

obtained confidence intervals using the bootstrap 

technique (Efron & Tibshirani 1993) with a bootstrap 

sample size 10,000. The confidence intervals were 

calculated for the models considered the best fit in the 

cases of females and males; the two-segment model 

with log-logistic error performed better. The confi-

dence intervals are presented for the two-segment 

model with log-logistic error terms for females and 
males, respectively (Tables 5-6). 

Considering that the allometric model has two 

defining components -the median function (systematic 

part) and the dispersion pattern (distribution of the error 

term) -in this case, we have 10 allometric models 

resulting from the combination of median functions 

(five) and dispersion patterns (two distributions). All 10 

models have been fitted to both female and male data. 

The goodness of fit for comparison of the 10 models 

to the female data is presented (Table 7). It can be 

observed that the model with the best fit is the two-

segment model with log-logistic distribution for the 

error term. Additionally, it's noted that the other four 

models with log-logistic errors have a closer fit (∆𝑖 less 

than 50) to the best one, compared to the five models 

with lognormal errors (∆𝑖 between 80 and 127). 

According to the ∆𝑖 ⁡index, any of the five models with 

log-logistic error terms has a better fit than those with 

lognormal error terms. In the last column of Tables 7 

and 8, the ranking of the 10 models is provided based 

on the goodness of fit, and it is observed that the 

distribution of the error term determines the quality of 

the fit.  

Another way to assess the effect of changing the 

error distribution (from lognormal to log-logistic) in 

each of the five models (traditional or change-point) is 

to compare the differences in ∆𝑖 by changing the 

distribution, that is, ⁡∆𝑖(𝐿𝑁𝑜𝑟) − ∆𝑖(𝐿𝐿𝑜𝑔𝑖𝑠) (Table 9). 

These differences are greater than the deltas 

observed in the fits of the five models with lognormal 

error distribution, whose differences are less than 44. 

Therefore, based on the available data and the fitted  
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Figure 2. QQ-normal plots for the logarithms of the residuals of a) the traditional Huxley Model and b) the two-segment 

model. The deviation of the plot at the ends of the line indicates the presence of heavy tails in the distribution of error terms. 

 

 

Table 2. Anderson-Darling test results on the assumption 

of normality of errors. 

 

Sex Model  𝐴𝑛 P-valor 

Females Linear 3.9016 0.0097 

 Quadratic 4.3729 0.0057 
 Cubic 4.4351 0.0054 

 Breakpoint 4.3407 0.0060 

 Two segment 4.4176 0.0055 

Males Linear 10.5500 < 10-5 

 Quadratic 12.0800 < 10-5 
 Cubic 11.7200 < 10-5 
 Breakpoint 11.7700 < 10-5 
 Two segment 11.6300 < 10-5 

 

models, it can be concluded that, according to the AIC, 

the improvement in goodness of fit is greater when 

switching from lognormal to log-logistic distribution 

than when changing any of the five fitted models while 
keeping the error distribution fixed. 

To rank the models according to their goodness of 

fit, we use the ∆𝑖 and 𝑊𝑖 indices derived from the 
original AIC, defined as:  

∆𝑖= 𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛 and 

              𝑊𝑖 = exp⁡((−0.5∆𝑖)/∑ 𝑒𝑥𝑝(−0.5∆𝑖)
𝑘
𝑖=1  

The calculations were not based on the corrected 

index given by: 

𝐴𝐼𝐶𝐶 = −2𝑙(𝜃) + 2𝑝 +
2𝑝(2𝑝 + 1)

𝑛 − 𝑝 − 1
 

The correction term is extremely small due to the 

difference between the number of parameters p (less 
than 10) and the number of data points (thousands, in 

this case). In Table 10, in columns 4 and 7, the 

correction term values for females and males are on the 

order of hundredths. 

DISCUSSION 

This study shows that the assumption of normality, 

often taken for granted when fitting a model to a set of 

observations, does not always hold. This has significant 

implications for choosing the best model and ensuring 

its certainty for inference purposes. 

This publication demonstrated that an assumption of 

the logistic distribution of errors performed better than 

the assumption of normality in the allometric analysis 

to describe the cephalothorax width-weight relation-

ship of the brown crab C. bellicosus. It is also shown 

that the choice of error distribution type influences the 

selection of the best model according to the Akaike 

index, and this has more weight in determining the 

goodness of fit than the type of adjusted model. 

It is important to test the assumptions of normality 

or lognormality of errors after fitting candidate models 

to a dataset to avoid selecting the wrong best model. As 

in this study, when assuming a normal distribution of 

errors, the cubic model was selected as the best model 

in the cephalothorax width-weight relationship for 

males with a 12-unit AIC distance from the nearest 

competitor. A model with a difference greater than 10 

AIC units from the best model is considered 

unsupported by the data (Burnham & Anderson 2002) 

and should be discarded from the candidate model set. 

However, when models were fitted assuming log-

logistic distribution, the best model was a two-segment 

model in both sexes. 
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Figure 3. Standard normal and logistic density functions.  

 

Table 3. Estimates of the parameters for the considered models, assuming multiplicative errors and following a log-logistic 

distribution. AIC: Akaike information criterion. In bold, best model with minor AIC.  
 

Sex Model 𝛽̂0 𝛽̂1 𝛽̂2 𝛽̂3 𝑥𝑏 𝜎̂2 𝑙(𝜃) AIC 

Females Linear -10.976 3.356    0.074 -5,674.4 11,354.9 
 Quadratic -5.048 0.682 0.301   0.073 -5,657.7 11,323.5 

 Cubic 22.517 -18.153 4.580 -0.323  0.073 -5,655.8 11,321.7 

 Breakpoint 3.250 3.208 0.476  70.086 0.073 -5,652.2 11,314.6 

 Two segment 4.820 3.289 -0.455 0.096 111.574 0.072 -5,646.7 11,305.5 

Males Linear -10.759 3.305    0.079 -10.469.5 20,945.0 

 Quadratic -5.147 0.837 0.270   0.077 -10,423.5 20,855.0 

 Cubic 21.724 -17.312 4.339 -0.303  0.077 -10.412.9 20,836.0 

 Breakpoint 3.458 3.144 0.499  74.772 0.077 -10,417.4 20,844.8 

 Two segment 5.188 3.215 -0.279 0.109 126.038 0.077 -10,411.2 20,834.4 

 

 

The heterogeneity of variances, common in LWR 

(variances increasing with size), is addressed by 

transforming the original data using the logarithm. 

However, in many cases, this transformation only 

reverses the heterogeneity.  

Sometimes, the distribution of errors cannot be 

modeled by the normal distribution because they have 

heavier tails. However, as demonstrated in this study, 

they can be modeled by a distribution with a greater 

spread than the normal distribution, such as the logistic 

distribution (Fig. 4). 

Using the logistic distribution in modeling the error 

term of an allometric model when the normal 

distribution is unsuitable because it cannot account for 

extreme error values can be justified by employing the 

following result demonstrated by Stefanski (1991). The 

author shows that the logistic distribution can be 

represented as a discrete mixture of normal distribu-

tions with different variances. 

When samples contain abundant observations over 

extended time intervals, various participants with 

different training and experience in sample collection 

often collect data. This diversity among samplers can 

be understood as a diversity in the accuracy with which 

participants record the sample data. Consequently, the 

complete sample can be viewed as a mixture of 

individual samples obtained by different collaborators 

involved in the sampling process. Considering the 

normal paradigm in individual samplings, we can 

assume that the total sample is a mixture of normal 

distributions, whose distribution, according to 

Stefanski (1991), is approximated by a logistic 

distribution. In this study, we possess two samples of 

sizes 1,558 (females) and 2,531 (males) collected over 

a year. According to the findings of Stefanski (1991), 

samplings conducted over extended periods by multiple 

samplers with varying sampling capabilities suggest 

that the error term (on the logarithmic scale) of the 

allometric model is likely to follow a logistic 

distribution rather than a normal distribution. 

Therefore, in extensive samplings involving multiple 

participants, the normality of errors should be verified, 

as the logistic distribution may be more appropriate for 

modeling the error distribution. As we have seen, the 

logistic distribution does not invalidate the normal 

paradigm; rather, the total sample is a discrete mixture 

of normally distributed samples. It is worth noting that 
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Figure 4. QQ-logistic plots for the logarithms of the residuals of a) the traditional Huxley model and b) the traditional 

quadratic model. The linear pattern in the plots indicates that the error term (on the geometric scale) in these models follows 

a logistic distribution. 

 

 

Table 4. Results of the Kolmogorov test on the 

assumption of logistic distribution of the logarithms of 

errors. 
 

Sex Model 𝐷𝑛 P-value 

Females Linear 0.0159 0.8252 

 Quadratic 0.0177 0.7134 

 Cubic 0.0155 0.8475 

 Breakpoint 0.0152 0.8633 
 Two segment 0.0175 0.7261 

Males Linear 0.0156 0.5690 

 Quadratic 0.0209 0.2198 

 Cubic 0.0197 0.2821 

 Breakpoint 0.0204 0.2429 

 Two segment 0.0216 0.1896 

 

Table 5. Bootstrap confidence intervals for the parameters 

of the two-segment model fitted to the data of female 

brown crab. 

 

Parameter Estimation Lower limit  Upper limit 

𝛽0 4.820 4.809 4.832 

𝛽1 3.298 3.149 3.330 

𝛽2 -0.455 -0.758 -0.154 

𝛽3 0.096 0.068 0.124 

𝑝𝑞  111.574 111.560 111.589 

𝜎2 0.072 0.069 0.075 

 

there are various ways in which the logistic distribution 

arises (Dubey 1969, Gumbel 1994, Villa-Diharce & 

Escobar 2006). 

The allometric breakpoint at 111.57 mm estimated 

CW in female crabs is very close to the morphometric 

maturity size reported by Rodríguez-Domínguez et al. 

(2015) of 107.7 mm for females of this species, confir- 

Table 6. Bootstrap confidence intervals for the parameters 

of the two-segment model fitted to male brown crab data. 

 

Parameter Estimation Lower limit  Upper limit 

𝛽0 5.188 5.178 5.199 

𝛽1 3.215 3.180 3.251 

𝛽2 -0.279 -0.435 -0.124 

𝛽3 0.109 0.086 0.132 

𝑝𝑞  126.038 126.034 126.044 

𝜎2 0.077 0.074 0.079 

 

ming that the relative growth of the carapace in female 

crab changes proportionally to the size of maturity, 

leading to gonadal growth. There is no information on 

the maturity size for males; however, based on the 

mating behavior in this species, it is inferred that males 

mature at a size larger than females. Mating occurs 

immediately after the female molts from its juvenile 

exoskeleton to an adult female exoskeleton. Still, 

courtship begins a few days earlier when the male 

positions himself on the female's back, embracing her 

with his appendages. Thus, the male must be larger than 

the female to hold her under his appendages in 

anticipation of the mating moment. Therefore, the 

allometric breakpoint at 126 mm shell width may be 

associated with the morphometric maturity of the male. 

As expressed by weight, the volume of the carapace 

undergoes three-dimensional growth, so the point of 

change may be associated with a shift in the relative 

growth of the height or length of crabs. In females, once 

after mating, the male injects seminal fluid and sperm 

into them, which is stored in a receptacle called the 

spermatheca, representing up to 4% of the female's 

weight. Although this fluid gradually decreases as the 
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Table 7. Comparison of the goodness of fit of models fitted to female data. AIC: Akaike information criterion. 

 
Distribution Model 𝑙(𝜃) 𝐴𝐼𝐶 ∆𝑖 𝑊𝑖 Rank 

Lognormal Linear -5,713.04 11,432.11 126.57 0 10 

 Quadratic -5,700.99 11,410.03 104.49 0 8 

 Cubic -5,700.00 11,410.07 104.53 0 9 

 Breakpoint -5,696.24 11,402.55 97.01 0 7 

 Two segment -5,688.50 11,389.10 83.56 0 6 
Loglogistic Linear -5,674.45 11,354.93 49.39 0 5 

 Quadratic -5,657.73 11,323.51 17.97 0 4 

 Cubic -5,655.83 11,321.73 16.19 0 3 

 Breakpoint -5,652.24 11,314.55 9.01 0.010 2 

 Two segment -5,646.72 11,305.54 0.00 0.990 1 

 

Table 8. Comparison of the goodness of fit of models fitted to male data. AIC: Akaike information criterion. 
 

Distribution Model 𝑙(𝜃) 𝐴𝐼𝐶 ∆𝑖 𝑊𝑖 Rank 

Lognormal Linear -10,577.95 21,161.92 327.48 0 10 

 Quadratic -10,530.27 21,068.57 234.13 0 9 

 Cubic -10,518.53 21,047.10 212.66 0 8 

 Breakpoint -10,524.55 21,059.14 224.70 0 7 

 Two segment -10.523.85 21,059.76 225.32 0 6 

Loglogistic Linear -10,469.51 20,945.04 110.60 0 5 

 Quadratic -10,423.48 20,854.99 20.55 0 4 

 Cubic -10,412.96 20,835.96 1.52 0.317 2 

 Breakpoint -10,417.36 20,844.76 10.32 0.004 3 
 Two segments -10,411.19 20,834.44 0.00 0.679 1 

 

Table 9. Differences in ∆𝑖 due to changing the assumption from the normal distribution to the logistic distribution of the 

errors when fitting each model. 
 

Model Linear Quadratic Cubic Breakpoint Two segment 

Difference 77.18    86.52 88.34       88.0       83.56 

 

Table 10. The Akaike information criterion corrections values by sample size (N) and sex (F: females, M: males). 
 

Model p(F) N (F) Corr. (F) p(M) N (M) Corr. (M) 

Linear 3 1558 0.027027 3 2531 0.0166205 

Quadratic 4 1558 0.046361 4 2531 0.0285035 
Cubic 5 1558 0.070876 5 2531 0.0435643 

Breakpoint 5 1558 0.070876 5 2531 0.0435643 

Two segment 6 1558 0.100580 6 2531 0.0618066 

 

 

 

gonad size increases, it still accounts for 3.75% of the 

female's weight (Espinoza-Ahumada 2019), which 

undoubtedly requires space within the female's 

carapace, defined since the pubertal molting process. In 

males, the testicles and the middle vas deferens 

involved in sperm and seminal fluid production grow 

from 0.66% in the juvenile stage to 2.8% in the mature 

stage (Espinoza-Ahumada 2019). The results do not 

support the above since the decrease in the slope of the 

second segment of the width-weight relationship 

indicates a crab that is lighter and larger in proportion 

to juvenile crabs. While it is true that the crab's 

exoskeleton undergoes a shape change from the 

juvenile to the adult phase during molting, the weight 

representing the growth of reproductive organs applies 

only within three months. After mating, the female 

develops the gonad and, within three months, lays her 

eggs. This study used specimens collected throughout 
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the year, so some crabs had not developed gonads 

which indicates that although the exoskeleton changes 

to accommodate the growth of internal reproductive 

organs, once they are out of reproductive season, the 

space is not compensated for by muscle growth. 

In the modeling and analyzing of the LWR in 

species of the genus Callinectes, the traditional 

potential model of Huxley has frequently been used. It 

assumes that the error term is multiplicative and 

follows a lognormal distribution on the arithmetic scale 

(Nevares-Martínez et al. 2003, Castillo et al. 2011, 

Omuvwie & Atobatele 2013, López-Martínez et al. 

2014, Santos et al. 2016). The initial selection of this 

model is highly restrictive, as it assumes that on the 

geometric scale, the model turns out to be a simple 

linear regression model, where the allometric 

coefficient is constant. However, this is not always the 

case. Therefore, it is important to have a set of models 

with different LWR patterns (Katsanevakis 2007, 

Rodríguez-Domínguez 2018) to be able to choose the 

model that best fits the data. 

In addition to having various options for the mean 

model, where one can choose the best among them, it 

is advisable to have different options for the error term 

distributions in the allometric regression model, 

allowing for different dispersion patterns for the 

problem. When the error term does not pass the 

normality test due to heavy tails, it is advisable to try 

modeling with another distribution with heavier tails 

than the normal distribution, such as the logistic 

distribution, the Student's t distribution, or a mixture of 

normal (Montesinos-López et al. 2019, Villa-Diharce et 

al. 2022). 

When an incorrect mean model is chosen, one that 

is not supported by the data, as is the case with the 

traditional Huxley model, there is a loss of information. 

Similarly, selecting an incorrect distribution for the 

error term is also inconvenient. Incorrect estimation of 

the dispersion pattern leads to erroneous confidence 

intervals for the model parameters and hypothesis tests 

on the parameters. 

The main drawback in this situation, when 

normality in errors is assumed, but heavy tails are 

present, is that the prediction intervals for the values 

will be excessively narrow.  
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